Laplacian comparison and sub-mean-value theorem for multiplier Hermitian manifolds
نویسندگان
چکیده
منابع مشابه
Mean Value Theorems on Manifolds
We derive several mean value formulae on manifolds, generalizing the classical one for harmonic functions on Euclidean spaces as well as the results of Schoen-Yau, Michael-Simon, etc, on curved Riemannian manifolds. For the heat equation a mean value theorem with respect to ‘heat spheres’ is proved for heat equation with respect to evolving Riemannian metrics via a space-time consideration. Som...
متن کاملMean Value Properties of the Laplacian
Let <¡>(z2) be an even entire function of temperate exponential type, L a selfadjoint realization of -A + c(x), where A is the Laplace-Beltrami operator on a Riemannian manifold, and <¡>(L) the operator given by spectral theory. A PaleyWiener theorem on the support of ( L) is proved, and is used to show that Lu = \u on a suitable domain implies (L)u = <p(\)u, as well as a generalization o...
متن کاملThe First Mean Value Theorem for Integrals
For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...
متن کاملThe Mean Value Theorem and Its Consequences
The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2004
ISSN: 0025-5645
DOI: 10.2969/jmsj/1190905456